We are delighted to announce that our exciting Sci-Art collaboration with The Keiskamma Trust in South Africa is well underway! In the spirit of Ubuntu [1], funded by the GCRF START grant, the collaboration involves a unique series of tapestries inspired and created by community-based artists and crafters from the Trust’s flagship Keiskamma Art Project located in South Africa’s Eastern Cape. The artwork is based on concepts provided by scientists in the UK and Africa working on GCRF START-related Energy Materials and Structural Biology themes. The aim of the collaboration is to stimulate shared learning and dialogue on solutions to local and global challenges in line with Sustainable Development Goals: from alternative energy solutions to tackle pollution and climate change, and biotechnology for food security, to improved health outcomes through novel drug discovery and design.

GCRF START-related research by scientists in the UK and Africa.
Photo credit: Pippa Hetherington, The Keiskamma Trust. Copyright: The Keiskamma Trust
The Keiskamma Trust is a small, Non-Profit Organisation (NPO) in South Africa’s Eastern Cape dedicated to addressing HIV/AIDS and poverty holistically through health, art, music and education initiatives. With unemployment levels in the region’s rural areas up to 90%, and water shortages, poor nutrition, lack of electricity, and diseases like HIV/AIDS, Tuberculosis (TB) and diabetes highly prevalent, hardship is an everyday experience for the remote communities the Trust serves. The artists and crafters creating the tapestries hail from the villages of Hamburg, Bodiam and Bell in the surrounding communities. Overcoming many challenges including months of Covid19 lockdown, they have already completed several panels, including one large panel and a series of smaller ones, with more panels nearing completion.
While the large ‘Our Vision for Africa’ panel gives vibrant expression to a community-led vision of a future with clean air and access to sustainable energy and good health, the smaller panels intricately depict a host of specific research topics. These range from explaining the purpose of the UK’s national Diamond Light Source synchrotron (Diamond), which lies at the heart of the GCRF START grant, to research on structures of proteins for novel HIV, blood-pressure and anti-fungal infection drug treatments, studies exploring organic solar energy materials, and themes on the role of catalysis, which underpins food production, generation of clean energy, and maintenance of clean water and air.

Artwork commissions like the SciArt collaboration bring much needed employment and income generation opportunities to the staff employed by the Keiskamma Art Project. Such commissions can also provide a platform for empowering skills development and learning, as Cebo Mvubu, theproduction managerat the Keiskamma Art Project, explains, “Here in South Africa the unemployment is too high and now even more with the Covid19 crisis”, says Cebo. “Commissions like the GCRF START Sci-Art project help many people from our villages, directly and indirectly. The income feeds our families and helps send our kids to school, and even if just one person is working on a project like the START commission, this helps support more than 5-8 people in their extended family. We also benefit from the skills we learn when doing these commissions and the publicity the project gets.”

Photo credit: Pippa Hetherington, copyright: The Keiskamma Trust.
There are many stories of hope among the crafters and artists at the Keiskamma Art Project, not least those reflecting the strength of the women in the region – described as ‘elabafazi’ in the local Xhosa language. One such story is from a crafter who is the sole breadwinner in her family, despite suffering from chronic health conditions, she alone supports her younger sisters, brothers and her daughter who are all unemployed.
“I have a big challenge because I am a single mother and I have to look after the kids at home,” the crafter from the Keiskamma Art Project explains. “I am not 100% health-wise so it is a big thing to feed everyone, enable them to go to school, and to keep a home. But since the year 2000, when I was accepted by the The Keiskamma Trust, I have employment which supports my family. I have learnt sewing, drawing, embroidery, felt-making, screen printing, pottery, and painting. It is a big opportunity to be the part of START’s Sci-Art project.”

There is a strong desire amongst the artists and embroidery crafters working on START’s SciArt commission for dialogue with the scientists in order to learn more about the concepts behind their creations, especially what the science could mean for their families and communities, “We want to learn from each other and from the scientists as we see this as a collaboration,” says Cebo. “It is one of the things we would love to know: what the scientists do. For example, we would like to know more about solar energy. We need new energy options here because we have little electricity and we often have load-shedding. But we do have lots of sunshine! We also hear that the scientists want to learn from us too. We would like to show them how we do this artwork.”

“There is a hunger here for greater connectivity. We can fashion a bridge from science to art through the interpretation of research concepts into embroidery, but it would mean so much to us if the science itself could touch our communities,” says Michaela Howse, curator and manager at the Trust’s Keiskamma Art Project. “It is rare that science being done in metropolitan centres, or internationally, reaches our villages and it is very exciting to work on concepts that seem to come from another world,” explains Michaela. “Dialogue between artists in our unique contexts, and the GCRF START scientists in theirs, may enrich both parties. Perhaps the applications of the research might one day grow to directly impact the needs of communities whose main concerns remain improved health, education opportunities, as well as dignity in life above all things.”
To encourage dialogue, the artists and embroidery crafters have recently written a letter to the scientists collaborating with START asking them to share how the concepts provided by the researchers could impact their villages. In the letter they ask: “Can your work educate us or help us in understanding energy, electricity, water, disease, better health and better lives? We would love to hear from you.”
The scientists are currently responding with letters of their own, explaining what the science might mean for improving everyday lives. In one such letter, scientists collaborating with START from the Biocatalysis and Structural Biology Research Group at the University of the Free State, in South Africa, respond by citing the inspiration behind their research to find new anti-fungal compounds which can be used in the health and agricultural sectors, “Dear Keiskamma community,” the letter states. “Thank you for your letter – both your commitment to your art and your determination in difficult circumstances inspire us to work hard on our research and make a difference in people’s lives.”
“I find it motivating to see the artists represent their vision of a better future through their artwork and I hope the science that I do has a positive impact on the world,” says GCRF START Co-Investigator, Dr Jeremy Woodward, who is the Principal Investigator in the Structural Biology Research Unit at the University of Cape Town. “These artworks show what the GRCF START grant is all about: using the most sophisticated technology in the world to enable Africans to solve African and global problems. I particularly hope that young people see these artworks and this plants the seed so that people see that science can be done anywhere in the world, by anyone.”
“It has been a great joy to see our science come to life through the eyes of the Keiskamma artists and I am very excited about the project’s potential to uplift communities in Africa,” says GCRF START Postdoctoral Research Assistant, Dr Lizelle Lubbe, from the University of Cape Town. “I hope this collaboration will break down barriers to science and inspire future generations of researchers and innovators, as well as stimulate dialogue with the communities impacted by the challenges that people in Africa and around the world face.”

The ‘Angiotensin Converting Enzyme’ panel. A tapestry designed by Cebo Mvubu of the Keiskamma Art Project based on research by Prof. Ed Sturrock (GCRF START Co-I) and GCRF START Postdoctoral Research Assistant, Dr Lizelle Lubbe, from the University of Cape Town, South Africa. The panel shows a snake wriggling through a blood vessel that has become affected by a build-up of fats, cholesterol and calcium (atherosclerosis). High blood pressure is a major cause of atherosclerosis and can lead to heart attacks and strokes. Certain snake venoms contain compounds that, when injected, cause their prey to lose consciousness from a drop in blood pressure. The venom of the Brazilian viper inhibits angiotensin converting enzymes and forms the basis for medicines that are used to lower blood pressure and treat heart disease.
Photo credit: Jeremy Woodward. Copyright: University of Cape Town on behalf of a collaborative project with the Synchrotron Techniques for African Research and Technology (START) in the United Kingdom, funded by the Global Challenges Research Fund (GCRF) START grant. ‘Angiotensin Converting Enzyme’, 2020, Keiskamma Art Project.
Embroidered by Nosiphiwo Mangwane.

The ‘Flexible Solar Cells’ panel. A Solar Energy tapestry designed by artist Nozeti Makubalo from the Keiskamma Art Project. The panel design is based on a collaborative concept provided by Prof. Moritz Riede (GCRF START Co-I) and Postdoctoral Research Assistant, Dr Pascal Kaienburg, from the University of Oxford, and Prof. Chris Nicklin (GCRF START PI) and Postdoctoral Research Associate, Dr Thomas Derrien, from the UK’s national synchrotron, Diamond Light Source (Diamond), all of whom work closely together on Solar Energy research. The materials being studied can be used to make solar cells which harness the sun as a source of energy. The research looks at how to improve the efficiency of materials in ‘organic semiconductors’ to make them commercially viable. These are more lightweight, flexible, environmentally friendly, and easier to deploy in rural environments than heavy, stiff panels of silicon-based solar cells. The data obtained tells us how these materials organise themselves on devices, which can affect how well the solar cells work.
Photo credit: Jeremy Woodward. Copyright: University of Cape Town on behalf of a collaborative project with Synchrotron Techniques for African Research and Technology (START) in the United Kingdom funded by the Global Challenges Research Fund (GCRF) START grant. ‘Flexible Solar Cells’, 2020, Keiskamma Art Project.
Embroidered by Nozeti Makubalo.

The ‘Aspergillosis’ panel. A tapestry designed by artist Siyabonga Maswana from the Keiskamma Art Project based on a concept provided by Dr Diederik Opperman (GCRF START Co-I) from the University of the Free State’s Biocatalysis and Structural Biology Research Group in South Africa. Opportunistic fungal pathogens (agents) invade vulnerable individuals, such as immune-compromised patients, and cause life-threatening health conditions (mucoses). Anti-fungal agents are used to combat mycoses but current therapies often suffer from toxicity, as well as emerging anti-fungal resistance, prompting the search for alternative medicinal drug targets. The panel depicts invasive aspergillosis, an infection caused by a type of fungus, growing on the lungs. The bright light of the UK’s synchrotron, Diamond Light Source, and a technique called X-ray crystallography are used to examine the structures of fungal redox enzymes (special types of proteins) as novel anti-fungal drug targets.
Photo credit: Jeremy Woodward. Copyright: University of Cape Town on behalf of a collaborative project with Synchrotron Techniques for African Research and Technology (START) in the United Kingdom funded by the Global Challenges Research Fund (GCRF) START grant. ‘Aspergillosis’, 2020, Keiskamma Art Project.
Embroidered by Nomakhaya Dada.

‘Chemistry from Plants’ panel. A tapestry designed by artist Siyabonga Maswana from the Keiskamma Art Project based on a concept provided by Dr Jeremy Woodward (GCRF START Co-I) from the University of Cape Town’s Structural Biology Research Unit in South Africa. Plants produce a variety of chemical compounds to defend themselves from being eaten and these poisons need to be detoxified by the plant when not needed. The panel depicts a small weed – Red Shepherd’s Purse – which repels insects by producing poisonous compounds called nitriles. These are broken down by three different enzymes, each converting nitriles of a different size. How these enzymes worked was a mystery until now because we couldn’t visualise them. Normally, enzymes arrange themselves into crystals that allow us to determine the positions of every atom but in this case it wasn’t possible because of their pentameric shape, as shown on the panel by pentagons that do not assemble into a space-filling pattern. Now, using the UK’s Diamond Light Source Synchrotron (Diamond) and the Titan Krios III (beamline M06) at Diamond’s Electron Bio-Imaging Centre (eBIC), Dr Woodward has been able to image these enzymes for the first time, paving the way to design new enzymes for a range of ‘eco-friendly’ biotechnology applications, from cleaning up toxins in contaminated land to improving crop types and yields, and helping design medicines with fewer side effects.
Photo credit: Jeremy Woodward. Copyright: University of Cape Town on behalf of a collaborative project with Synchrotron Techniques for African Research and Technology (START) in the United Kingdom funded by the Global Challenges Research Fund (GCRF) START grant. ‘Chemistry from plants’, 2020, Keiskamma Art Project.
Embroidered by Thembisa Gusha.

Photo credit: Cebo Mvubu. Copyright: The Keiskamma Trust
Tapestry topics
Catalytic CO2 conversion to methanol for producing renewable and sustainable fuels; new compounds for controlling blood-pressure; enzymology for solutions to food security; anti-fungal drug targets for life-threatening fungal infections (mycoses); the structure of the South African HIV-1 Subtype C Protease for insights into a possible HIV vaccine/treatments; research into antibiotic-resistant strains of the bacteria Staphylococcus aureus; improving efficiency of solar cell materials; finding solutions to diseases like Malaria, and research on Rotaviruses which are the most common cause of diarrheal disease.
GCRF START SciArt project collaborating institutions
South Africa: University of the Witwatersrand; University of Cape Town; Stellenbosch University; University of the Free State; North-West University; Aim Shams University; University of Limpopo; University of Pretoria; National University of Lesotho; National Institute of Communicable Diseases (NICD).
United Kingdom: Diamond Light Source; University of Oxford; University of Southampton; University of Cardiff; University of Sheffield.
More about The Keiskamma Trust
The Keiskamma Trust uses art and heritage/tourism to alleviate long-standing poverty and unemployment in the communities of Hamburg, Bodiam and Bell in the Eastern Cape of South Africa. Founded in 2000 by the local Xhosa community with the help of the Trust’s first director, artist and doctor – Dr Carol Hofmeyr – the Trust’s community driven and inspired Keiskamma Art Project works to develop creative skills to empower mainly women and young members of the community. It does this through turning inherent talents into sustainable income-generating activities, showcasing the local culture and heritage, and aiding the archiving of the Eastern Cape rural collective memory and preservation of oral history. Read more here about The Keiskamma Trust. Related articles: The Keiskamma Art Project: Restoring Hope and Livelihoods:https://www.tandfonline.com/doi/abs/10.1080/00043389.2017.1338648?journalCode=rdat20
Contacts
For more information about the GCRF START SciArt project, please contact : Dr Jeremy Woodward
[1] ‘Ubuntu’ or ‘umntu ngumntu ngabantu’ in the isiXhosa language means ‘I am because you are’. In the Oxford Dictionary and Oxford Learners’ dictionary respectively, Ubuntu is defined as a quality that includes the essential human virtues of compassion and humanity or ‘the idea that people are not only individuals but live in a community and must share things and care for each other.’