GCRF START funds strategic Energy Materials Workshop

Cape Town, 16-17 December 2019

A warm South African welcome and stunning Cape Town backdrop greeted the 20 participants of the GCRF START Energy Materials Workshop, which was funded by GCRF START. The event took place from the 16-17 December 2019 and was hosted by the Catalysis Institute and c*change (DSI-NRF Centre of Excellence in Catalysis) at the University of Cape Town in South Africa.

The event kicked off with an introductory dinner at the stunning Steenberg Farm. Nationalities from Swaziland and South Africa through to the UK and Germany were represented. The Post-docs (PDRA’s), MSc. and PhD students, University lecturers, Principal Investigators (PI’s) and Co-Investigators (Co-I’s), Communications and grant staff hailed from the University of Cape Town’s Catalysis Institute (SA), University of the Witwatersrand (SA) Diamond Light Source (UK), the ISIS Neutron Source (UK), the University of Oxford (UK), Cardiff Catalysis Institute, Cardiff University (UK), the University of Southampton (UK), University of Sheffield (UK), The African Neutron and Synchrotron Data Analysis Competency (ANSDAC), and the DST-NRF Centre of Excellence in Catalysis – c*change (SA).

GCRF START December 2019 Energy Materials Workshop participants at the University of Cape Town workshop venue. Front row from left: Dr Daniel Bowron, Sikhumbuzo MasinaDr Sofia Moreno-Diaz, Dr Caren Billing, Chris Mullins, Adam Shnier; Second row from left: Mathias Kiefer, Dr Michael Higham, Dr Peter Wells, Prof. Moritz Riede, Prof. Michael Claeys; third row from left: Dr Wilson Mogodi, Dr Thomas Derrien; back row from left: Dr Mohamed Fadlalla, Dr Nico Fischer, Dr Pascal Kaienburg, Prof. Chris Nicklin, Prof. Dave Billing. Photo Credit Rebekka Stredwick, ©Diamond Light Source 

Tours of the Centre for Catalysis were given by Professor Claeys showcasing the excellent laboratory facilities and equipment available for use. GCRF START project Investigators and PDRA’s presented research covering topics including:     

  • Photo Voltaic’s – PV, batteries, fuel cells, solar cells
  • Organic solar cells and Microstructures
  • Organic semiconductors
  • Global optimisation of Cu clusters
  • Catalysis (controlling nanomaterials and structures)
  • CO2 hydrogenation
  • X-ray Spectroscopy
  • Crystallography

Presentations by Nico Fischer at ANSDAC, Michael Claeys from c*Change, and Daniel Bowron from the ISIS Neutron Source, provided insights into the collaboration opportunities through GCRF START.

Passing the mid-point of the GCRF grant is a good time to reflect on what has been achieved thus far, and is a useful time to plan ahead – both within the time of the remaining grant and how to continue the momentum into the future. With established PI’s, Co-I’s, and Post-docs attending the workshop, there was ample opportunity to share ideas for a potential GCRF START phase II, and to agree a vision and strategy for forging new ways to collaborate on the African continent in keeping with the UN Sustainable Development Goals and Pan-African 50-year mission – AGENDA 2063.

In particular, the discussion considered ways to facilitate beamtime applications within Energy Materials research. Access to Diamond can either be through an individual proposal, or through a ‘Block Allocation Group’ (BAG). GCRF START is an excellent vehicle to bring together a BAG for Energy Materials research, which also increases the networking between scientists.  Indeed, there is already a successful BAG access in Structural Biology. In addition, beamlines with robotic support allow for remote access, meaning scientists can take control of the beamline without having to travel thousands of miles to take part.

Another key point was how to increase the amount of outreach activity we do to further the impact of the grant and help foster an enthusiasm for salient science within the local population.  There are already many examples of excellent practice from individuals and institutions within the grant network such as SciArt with local crafters from the Keiskamma Art Project, as well as outreach to schools and graduates through to government ministers.

Finally, the network has grown for the grant to further increase its scope, expanding to include more researchers, institutions and organisations. There is a great opportunity to be had in teaching more about applying synchrotron science to a wider pool of researchers who may find that using the powerful X-ray beams and laboratory equipment available through GCRF START collaborators can enhance their current work and skills set.

An important aspect of all START events is networking and knowledge sharing, and participants took full advantage of the time available between presentations at coffee breaks and mealtimes to share their experiences and cement collaborations. At the end of the event, a traditional South African ‘Braai’ (Barbeque) in the grounds of the University of Cape Town aptly rounded off a thoroughly enjoyable and fruitful workshop. Interviews, photos and videos captured the buzz of the workshop to be used to share more of START’s ongoing work, achievements and impact with our current and potential stakeholders.

Photo Credit Rebekka Stredwick, ©Diamond Light Source

Across the continent, GCRF START is working with Africa to support the Pan-African 50-year mission: AGENDA 2063 .

Click here for more information about the UN’s Sustainable Development Goal for Energy.

New collaboration opportunities for computational insights into catalysis

A successful secondment by GCRF START computational scientist, Dr Michael Higham, has led to exciting new computational modelling collaborations involving leading catalysis institutes in South Africa and the UK.

These opportunities range from investigating adsorption induced magnetisation changes in nickel catalysts, to research into bimetallic catalysts for CO2 hydrogenation of environmental and industrial importance in the search for sustainable, clean energy sources to tackle climate change.

Dr Higham, who is a START-funded Postdoctorate Research Associate at Cardiff Catalysis Institute working with the UK’s national synchrotron light source, Diamond Light Source and the UK Catalysis Hub, spent two months from December 2019 to January 2020 at the University of Cape Town meeting researchers, undertaking initial computational work, and getting to know the projects.

Now back in the UK, Dr Higham’s aim is to provide theoretical inputs through computational modelling in order to support findings from experimental results.

One of these projects focusses on bimetallic alloy catalysts for methanol synthesis and conversion involving Dr Mohamed Fadlalla and Christopher Mullins from the University of Cape Town’s Centre of Catalysis and c*Change, South Africa’s DST-NRF Centre of Excellence in Catalysis Research.

“In early December 2019, our team from the University of Cape Town and Southampton University (UK) visited the Diamond Light Source synchrotron and used the B18 beamline to study the influence of substituents in the ferrite structure on the reduction behaviour and carbon dioxide hydrogenation reaction to valuable products (e.g. fuels),” Dr Fadlalla explains. “The next step is Michael’s computational work to help us to calculate certain insights from the results such as how the catalyst looks and how the reactant is interacting with the catalyst.”

The computational calculations will examine the catalytic product distributions which provide detailed insights into possible explanations for observed catalyst selectivity, as Dr Higham explains,

“Through modelling adsorption energies, activation energies and reaction energies we hope to shed light on what happens on the catalyst’s surface. We want to compare the observed, experimental data with the computational calculations.”

Michael Higham (L) & Mohamed (R) Fadlalla working on bimetallic alloy catalysts for methanol synthesis and conversion using computational studies.
Photo credit: Rebekka Stredwick; ©Diamond Light Source Ltd.

Another project focuses on the rationalisation of experimentally observed adsorption-induced changes in magnetisation of Ni particles. Working together with Dominic de Oliveira from UCT, Dr Higham’s intention is that the computational results, in conjunction with the experimental work, will pave the way for possible new techniques to employ magnetism to probe surface area and composition.

“The secondment was a great opportunity to meet some really enthusiastic scientists doing some excellent work on catalysis,” Dr Higham reports. “The collaborations represent not only a trajectory for progress in solving real-world energy problems but also a fundamental knowledge foundation that can inform future studies”.

“Computational experts like Michael can predict how certain catalysts perform and we can try to confirm that with our techniques which is a reciprocal learning process,” says Professor Michael Claeys, Director of c*Change. “This expertise informs us and we inform them through the results which is something a single group can’t do because very specific expertise is needed. Collaborating provides some of the most powerful learning opportunities which really shape your people.”

Such collaborations through START not only enable shared learning, they increase opportunities for publications and – in Dr Fadlalla’s words – “give Africa a bigger footprint in the wider catalyst society”, as Co-I on the START grant, Dr Peter Wells, explains,

“START is a fantastic opportunity for the UK to work in concert with our African partners to tackle shared challenges. It is clear that the excitement generated can be inspirational and helps to further integrate research partnerships.”

More about the contributors

Dr Michael Higham works with Professor Richard Catlow’s group at Cardiff University and is supported by GCRF START to provide computational insights for experimental work utilising the synchrotron facilities at Diamond Light Source Ltd. Michael’s current research project concerns Cu-based catalysts for methanol synthesis from CO2.

Dr Mohamed Fadllala is a Post Doctorate Fellow at the University of Cape Town’s Catalysis Institute in the Department of Chemical Engineering.

Dr Peter Wells is an Associate Professor and a Co-I on the START grant. He currently has a joint appointment between Diamond Light Source Ltd and the University of Southampton.

Professor Michael Claeys is the Director of DST-NRF Centre of Excellence in Catalysis, c*change, hosted by the Catalysis Institute in the Department of Chemical Engineering at the University of Cape Town, South Africa