New collaboration opportunities for computational insights into catalysis

A successful secondment by GCRF_START computational scientist, Dr Michael Higham, has led to exciting new computational modelling collaborations involving leading catalysis institutes in South Africa and the UK.

These opportunities range from investigating adsorption induced magnetisation changes in nickel catalysts, to research into bimetallic catalysts for CO2 hydrogenation of environmental and industrial importance in the search for sustainable, clean energy sources to tackle climate change.

Dr Higham, who is a START-funded Postdoctorate Research Associate at Cardiff Catalysis Institute working with the UK’s national synchrotron light source, Diamond Light Source and the UK Catalysis Hub, spent two months from December 2019 to January 2020 at the University of Cape Town meeting researchers, undertaking initial computational work, and getting to know the projects.

Now back in the UK, Dr Higham’s aim is to provide theoretical inputs through computational modelling in order to support findings from experimental results.

Read more

The START of great things!

Visualising the structure of an intact helical filament at close-to-atomic resolution for the first time

“We are seeing critical scientific discoveries and the emergence of a new generation of experts that have resulted directly from our training programmes in advanced methods and the use of synchrotron facilities and tools.” Dr Gwyndaf Evans, START Principal Life Sciences Principal Investigator and Principal beamline scientist on Diamond’s VMXm beamline.

A seminal work of Dr Jeremy Woodward, Dr Andani Mulelu and Angela M.Kirykowicz from the University of Cape Town (UCT), South Africa, has provided novel and exciting insights into the structure and inner workings of nitrilase enzymes with the potential to address key health, food security and environmental challenges within Africa and beyond.

Read more

Sharing solar cell research

Together as a society we face many challenges in improving our society in a sustainable way. One such challenge is linked to our ability to develop and maintain our quality of life whilst reducing our impact on the Earth. For this, renewable energy is fundamental and its demand is ever increasing.

Preparing electron transport layers in a clean room environment

Considering the importance of electricity availability in remote areas and the globally increasing energy demand, the University of the Witwatersrand (Wits) in South Africa and the University of Sheffield in the UK are developing solar cell technologies known as emerging photovoltaics. Along the way, we are creating networks between the UK and Africa for the support of such research (This is actively supported by GCRF-START).

Read more